Согласно Пособию по обследованию строительных конструкций зданий (АО «ЦНИИПРОМЗДАНИЙ»):

1. В металлургической промышленности основные производственные процессы, связанные с переработкой материалов, сопровождаются высокотемпературным тепловым излучением.
Цехи с тепловой нагрузкой 50 Вт/куб.м и более называются горячими. Особенно высока тепловая нагрузка в горячих цехах металлургических заводов, достигающая 175-300 Вт/куб.м.
Источниками теплового излучения в горячих цехах являются горячие поверхности печей, котлов, трубопроводов, нагретого или расплавленного металла и др.
Изучение терморадиационного режима в производственных зданиях обусловлено созданием необходимых санитарных условий труда и обеспечением долговечности строительных конструкций.
2. Тепловые источники по характеру излучения разделяются на четыре группы:
- I группа - источники с температурой излучающей поверхности до 500 °С, спектр излучения которых характеризуется длиной волны от 9,3 до 3,7 мк (паропроводы, печи - нагревательные, плавильные, сушильные);
- II группа - источники с температурой поверхности до 1200 °С, спектр излучения которых характеризуется длиной волны от 3,7 до 1,9 мк (излучение внутренних поверхностей печей и горнов, нагретые слитки, заготовки, расплавленный металл и др.);
- III группа - источники с температурой от 1200 до 1800 °С с преобладанием коротких инфракрасных и видимых лучей (расплавленные металлы);
- IV группа - источники с температурой 2000-4000 °С, спектр их излучений - короткие инфракрасные, видимые и ультрафиолетовые лучи с длиной волны от 1,2 до 0,8 мк (дуговые печи, сварочные аппараты).
3. Участвующие в теплообмене тела с более высокой температурой называют источниками, с менее высокой температурой - приемниками теплового излучения.
4. При натурных обследованиях определяют: расположение и размеры источников; положение поверхности приемника относительно источника теплового излучения; температуру и характер поверхности источников и приемников; изменение характера воздействия источников во времени; изменение интенсивности излучения в пространстве и времени.
Расположение и размеры источников определяют по технологическим схемам или путем непосредственных измерений.
5. Изменения характера воздействия источников во времени выявляются путем фиксации моментов начала и окончания воздействия и изменения положения источников и температуры их поверхности в течение всего времени воздействия.
Температуру поверхности стали приближенно можно определять визуально, по цвету накала нагретого изделия:
- температура 520 °С - начало свечения металла;
- температура 700 °С – цвет накала тёмно-красный;
- температура 800 °С – цвет накала тёмно-вишнёвый;
- температура 900 °С – цвет накала вишнёво-красный;
- температура 1000 °С – цвет накала светло-вишнёвый;
- температура 1100 °С – цвет накала оранжевый;
- температура 1200 °С – цвет накала жёлтый;
- температура 1300 °С – цвет накала раскалённый белый;
- температура 1400 °С – цвет накала сварочно-белый;
- температура 1500 °С – цвет накала ослепительный белый.
6. Температуры поверхностей источников и приемников определяются термопарами при температуре до 500 °С и с помощью оптических пирометров типа ОПИР-017 в интервале температур 600-1400 °С, а также современными бесконтактными инфракрасными термометрами типа при температуре до 2000 °С или тепловизорами типа.
Температуры поверхности источников могут приниматься также по данным технологических инструкций на производство и обработку продукта и изделий.
Интенсивность теплового излучения измеряется с помощью актинометров типа ЛИОТ.
Измерения температур, интенсивности теплового излучения и параметров внутреннего воздуха производятся перед началом воздействия источника, в течение времени воздействий (2-4 измерения) и после окончания до стабилизации температур.
7. При оценке общего терморадиационного режима помещений и воздействия теплового излучения на человека измерения производятся на постоянных рабочих местах и по объему помещения на различном удалении от источника с таким расчетом, чтобы охватить зону с величиной интенсивности излучения не менее 350 Вт/кв.м, при этом приемная поверхность актинометра располагается перпендикулярно потоку излучения.
8. При оценке воздействия теплового излучения на строительные конструкции актинометрические измерения производятся непосредственно около поверхностей конструкций; приемная поверхность актинометра устанавливается параллельно поверхностям конструкций.
9. Одновременно с измерениями интенсивности излучения выполняются измерения температур поверхностей конструкций, температуры и скорости движения воздуха непосредственно около конструкций. При этом составляется подробная схема измерений с указанием размеров источника и приемника излучения и расстояний, необходимых для фиксации их взаимного расположения. Здесь же характеризуется состояние поверхности приемника (например, «окрашена алюминиевой краской или окислена» и т.п.). Результаты измерений заносятся в специальные таблицы.
10. На основе измерений строятся изоактины - линии равной интенсивности теплового излучения, Вт/кв.м, в плане и по вертикали помещения и хроноактинограммы - графики изменения интенсивности излучения во времени для характерных пунктов помещения.
По результатам измерений строятся также актинограммы облученности конструкций, Вт/кв.м, путем нанесения на чертеже с сечением конструкции по нормали к поверхностям величин облученности.
11. Результаты измерений интенсивности теплового излучения сопоставляются с требованиями санитарных норм и норм проектирования строительных конструкций, и на этой основе разрабатываются рекомендации по обеспечению условий труда и долговечности строительных конструкций.

Контактная информация

  +7-499-390-78-95
   This email address is being protected from spambots. You need JavaScript enabled to view it.

Наши работы

Статистика


Рейтинг@Mail.ru